Random Euclidean embeddings in finite-dimensional Lorentz spaces

نویسندگان

چکیده

Quantitative bounds for random embeddings of $\mathbb{R}^{k}$ into Lorentz sequence spaces are given, with improved dependence on $\varepsilon$.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From the Lorentz Transformation Group in Pseudo-Euclidean Spaces to Bi-gyrogroups

‎The Lorentz transformation of order $(m=1,n)$‎, ‎$ninNb$‎, ‎is the well-known ‎Lorentz transformation of special relativity theory‎. ‎It is a transformation of time-space coordinates of the ‎pseudo-Euclidean space $Rb^{m=1,n}$ of one time dimension and ‎$n$ space dimensions ($n=3$ in physical applications)‎. ‎A Lorentz transformation without rotations is called a {it boost}‎. ‎Commonly‎, ‎the ...

متن کامل

On Embeddings between Classical Lorentz Spaces

Let p 2 (0; 1), let v be a weight on (0; 1) and let p (v) be the classical Lorentz space, determined by the norm kfk p (v) := (R 1 0 (f (t)) p v(t) dt) 1=p. When p 2 (1; 1), this space is known to be a Banach space if and only if v is non-increasing, while it is only equivalent to a Banach space if and only if p (v) = ? p (v), where kfk ? p (v) := (R 1 0 (f (t)) p v(t) dt) 1=p. We may thus conc...

متن کامل

Quantum approximation I. Embeddings of finite-dimensional Lp spaces

We study approximation of embeddings between finite dimensional Lp spaces in the quantum model of computation. For the quantum query complexity of this problem matching (up to logarithmic factors) upper and lower bounds are obtained. The results show that for certain regions of the parameter domain quantum computation can essentially improve the rate of convergence of classical deterministic or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 2023

ISSN: ['0039-3223', '1730-6337']

DOI: https://doi.org/10.4064/sm210612-26-8